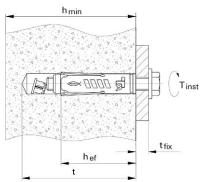


FICHE TECHNIQUE Cheville fischer TAM

ETA-04/0003

Applications:

A utiliser dans : Béton et pierre naturelle à structure dense.

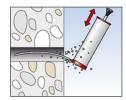

Pour fixer: Garde-corps, grilles, poteaux, consoles, platines, machines, châssis, portails, pieds de

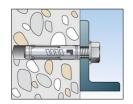
rayonnages, etc.

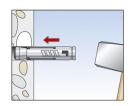
Description:

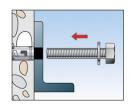
La cheville pour charges lourdes TAM est une cheville en acier à expansion contrôlée par couple de serrage pour les montages à fleur. La cheville est posée à fleur du support et permet d'utiliser les vis du commerce, quelle que soit leur forme de tête, et les tiges filetées à pas métrique. La pente progressive du cône permet une augmentation rapide de l'effort d'expansion.

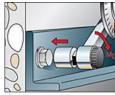
Caractéristiques :




Туре	Code	d_0	h _{trav}	[M	
	art.	Foret	Profondeur de perçage mini	Longueur	Taraudage	
			pour montage à fleur	totale		
		Ø	mm	mm		
TAM – Version acier électrozingué sans vis						
TA M 6	90245	10	65	49	M6	
TA M 8	90246	12	70	56	M8	
TA M 10	90247	15	90	69	M10	
TA M 12	90248	18	105	86	M12	


Type	Code art.	d₀ Foret Ø	h _{min} Profondeur de perçage mini mm	l Longueur totale mm	t _{fix} Longueur utile maxi	Taraudage (Ø x long.) M x mm	SW Ouverture de clé	Rondelle (Ø ext. x épaisseur) mm
TAM-S – Version acier électrozingué avec vis à tête hexagonale et rondelle								
TA M6 S/10	90249	10	75	49	10	M6 x 60	10	12 x 1,6
TA M8 S/10	90250	12	80	56	10	M8 x 65	13	16 x 1,6
TA M10 S/20	90251	15	110	69	20	M10 x 90	17	20 x 2
TA M12 S/25	90252	18	130	86	25	M12 x 110	19	24 x 2,5




Mise en œuvre:

Charges admissibles 1) dans un béton C 20/25 2) (en daN)

			TAM 6	TAM 8	TAM 10	TAM 12
Profondeur d'ancrage effective	h _{ef}	(mm)	40	45	55	70
Charge admissible en traction axiale d'une α et entraxe $s \ge 3 h_{ef}$	cheville	e isolée :	sans influence du	bord N _{adm} , c-à-d di	stance au bord c≥	1,5 h _{ef}
Béton non fissuré C 20/25 2)	357	571	948	1188		
Charge admissible en cisaillement d'une che et entraxe $s \ge 3 \ h_{\text{ef}}$	eville i	solée sa	ns influence du bo	rd V _{adm} , c-à-d dista	ance au bord c ≥ 10	0 h _{ef}
Acier électrozingué classe de résistance 8.8 (daN)			330	670	1100	1700
Caractéristiques des chevilles et dimension	s du s	upport				
Distance entre axes caractéristique	S _{cr,N}	(mm)	120	135	165	210
Distance au bord caractéristique	C _{cr,N}	(mm)	60	68	83	105
Distance entre axes mini 3)	S _{min}	(mm)	80	90	110	160
Distance au bord mini 3)	C _{min}	(mm)	50	60	70	120
Epaisseur mini du support	h _{min}	(mm)	100	100	110	140
Ø trou de passage dans l'élément à fixer en cas de montage à fleur	$d_f \leq$	(mm)	7	9	12	14
Couple de serrage	T_{inst}	(Nm)	10	20	40	75

¹⁾ Les coefficients partiels de sécurité (1,4) pour les sollicitations et pour les matériaux sont déjà appliqués. Pour les homologations de charges, traction et cisaillement, veuillez vous reporter à la méthode de dimensionnement A (Guide ETA, annexe C).

Pour des classes de résistance supérieures, les valeurs peuvent être majorées jusqu'à 55 %.

³⁾ Avec réduction simultanée de la charge.