
Frette d'assemblage RLK 603 K

construction à double disque en acier inoxydable résistant à la corrosion

Caractéristiques

- · Couple transmissible élevé
- Couple transmissible de 170 Nm à 23 000 Nm
- Serrage des vis à la clé dynamométrique
- Démontage facile sans vis d'extraction
- Centre l'arbre creux ou le moyeu sur l'arbre plein
- Pour arbres creux ou moyeux de diamètres extérieurs de 24 mm à 175 mm
- Toutes les pieces en acier inoxydable
- · Forte resistance à la corrosion
- Vis DIN 931/933 classe A2-70
- Lubrifiée avec une graisse alimentaire type H1

Exemple d'application

Ajustable dans le sens de rotation, la frette RLK 603 K assure une liaison sans jeu entre le tenon d'un agitateur, dans un système de tri pour produits de boulangerie, et l'arbre moteur. L'utilisation de l'inox permet un nettoyage régulier de l'ensemble avec un liquide de lavage.

Couples transmissibles et forces axiales

Les couples transmissibles et les forces axiales indiqués dans les deux pages suivantes sont en accord avec les tolérances, les qualités de surface et les exigences de matières indiquées dans les tableaux suivants. Veuillez nous contacter en cas de valeurs différentes.

Tolérances

d	w	Alésage de	Arbre	Jeu de	
>	≤	l'arbre creux	plein	montage	
mm	mm	ISO	ISO	max. mm	
6	10			0,011	
11	18	H6	j6	0,014	
19	30			0,017	
31	50	H6	h6	0,032	
51	80	H6	g6	0,048	
81	120			0,069	
121	180			0,079	
181	250	H7	96	0,090	
251	315	11/	g6	0,101	
316	400			0,111	
401	500			0,123	

D'autres configurations d'assemblage peuvent être sélectionnées, satisfaisant également le jeu préconisé entre les arbres creux et plein.

Surfaces

La rugosité moyenne des surfaces en contact entre l'arbre creux et l'arbre plein est $R_z=10\ldots 25~\mu m$.

<u>Matières</u>

Les caractéristiques à appliquer à l'arbre creux comme à l'arbre plein sont:

- Limite élastique R_e ≥ 300 N/mm²
- Module E d'élasticité ca. 200 kN/mm²

Montage

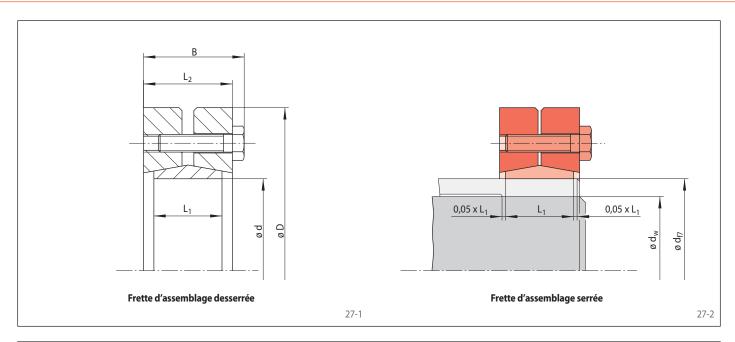
Veuillez respecter les instructions de montage et d'utilisation de nos frettes d'assemblage double disque RLK 603 K.

Transmission simultanée du couple et de la force axiale

Les couples M indiqués dans les tableaux sont appliqués avec des forces axiales F=0 kN; réciproquement les forces axiales F indiquées sont appliquées pour des couples M=0 Nm. Si le couple et la force axiale doivent être transmis simultanément le couple transmissible M et la force axiale transmissible F sont réduits. Veuillez consulter les informations techniques de la page 29.

Exemple de commande

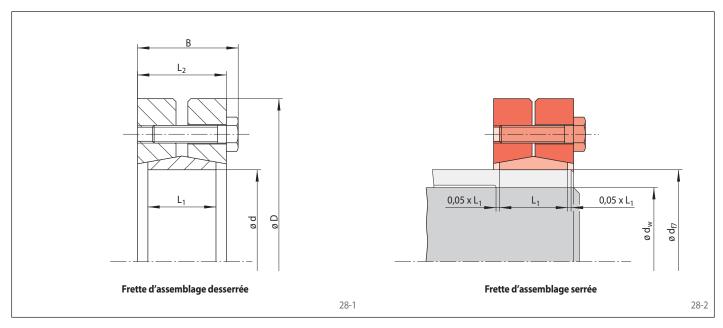
Frette d'assemblage RLK 603 K pour arbre creux de diamètre extérieur d = 100 mm:


• RLK 603 K-100

Référence 4200-100310-000000

Frette d'assemblage RLK 603 K

construction à double disque en acier inoxydable résistant à la corrosion


Dimensions							Données techniques						
							Couple ou force axiale transmissible		Vis de serrage				
Taille d	D I	В	L ₁	L ₂	d _w *	M I	F	Couple de serrage M _S	Nombre	Taille	Longueur		
mm	mm	mm	mm	mm	mm	Nm	kN	Nm			mm	kg	
24	50	21,5	14	18	19 20 21	170 200 240	18 20 22	3,9	6	M 5	16	0,19	4200-024310-000000
30	60	23,5	16	20	24 25 26	200 220 240	16 18 19	3,9	7	M 5	18	0,29	4200-030310-000000
36	72	26,0	18	22	28 30 31	260 330 350	18 22 23	6,8	5	M 6	20	0,47	4200-036310-000000
44	80	28,0	20	24	34 35 36	350 440 480	22 25 27	6,8	7	M 6	20	0,6	4200-044310-000000
50	90	31,0	22	27	38 40 42	530 620 730	28 31 35	6,8	8	M 6	22	0,8	4200-050310-000000
55	100	33,0	23	29	42 45 48	680 850 1 050	32 37 45	6,8	8	M 6	25	1,1	4200-055310-000000
62	110	33,0	23	29	48 50 52	1 000 1 200 1 350	43 50 52	6,8	10	M 6	25	1,3	4200-062310-000000
68	115	33,0	23	29	50 55 60	1 100 1 400 1 750	45 51 57	6,8	10	M 6	25	1,3	4200-068310-000000
75	138	36,3	25	31	55 60 65	1 300 1 700 2 050	48 53 64	16	7	M 8	25	2,2	4200-075310-000000
80	145	36,3	25	31	60 65 70	1700 2050 2350	53 64 69	16	7	M 8	25	2,4	4200-080310-000000
85	155	43,3	30	38	60 65 70	2400 2450 2500	70 72 74	16	10	M 8	30	3,4	4200-085310-000000
90	155	43,3	30	38	65 70 75	2550 3200 3800	75 91 101	16	10	M 8	30	3,3	4200-090310-000000
95	170	48,3	34	43	65 70 75	2600 2800 3100	76 94 102	16	12	M 8	35	4,6	4200-095310-000000
100	170	48,3	34	43	70 75 80	3300 4000 4800	96 107 117	16	12	M 8	35	4,4	4200-100310-000000
110	185	55,4	39	49	75 80 85	3 900 4 800 5 600	103 119 130	32	9	M 10	40	5,9	4200-110310-000000

^{*} Les diamètres d'arbre d_w listés dans le tableau sont des exemples sélectionnés. Pour d'autres diamètres d_w consulter les informations techniques page 29.

Frette d'assemblage RLK 603 K

construction à double disque en acier inoxydable résistant à la corrosion

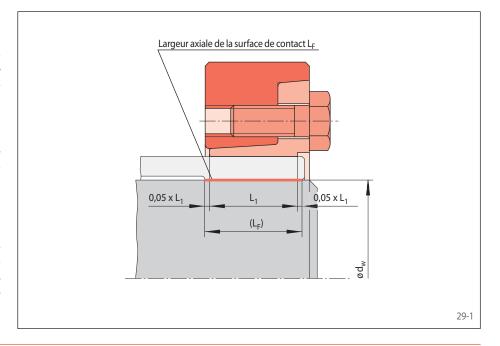
	Données techniques							Référence					
								Vis de serrage				Poids	
Taille							nsmissible	Couple de	ie				
d	D	В	L ₁	L ₂	d _w *	М	F	serrage M _S	Nombre	Taille	Longueur		
mm	mm	mm	mm	mm	mm	Nm	kN	Nm			mm	kg	
125	215	59,4	42	53	85 90 95	5 900 7 000 8 100	136 152 168	32	12	M 10	40	8,7	4200-125310-000000
130	215	59,4	42	53	90 95 100	6500 7800 9200	141 163 184	32	12	M 10	40	8,4	4200-130310-000000
140	230	65,5	46	58	95 100 105	8100 9300 11000	171 187 209	55	10	M 12	45	10,0	4200-140310-000000
165	290	78,0	56	68	115 120 125	17 000 19 000 21 000	292 319 346	135	8	M 16	55	21,0	4200-165310-000000
175	300	78,0	56	68	125 130 135	18 500 21 000 23 000	297 319 346	135	8	M 16	55	21,0	4200-175310-000000

^{*} Les diamètres d'arbre d_w listés dans le tableau sont des exemples sélectionnés. Pour d'autres diamètres d_w consulter les informations techniques page 29.

Informations techniques sur les frettes d'assemblage

Diamètre d'arbre d_w

Les valeurs de couples transmissibles M ou de forces axiales F données dans les tableaux sont calculées pour un exemple d'arbre de diamètre d_w. Les valeurs de d_w intermédiaires par rapport


à celles indiquées dans le tableau peuvent être déterminées avec une précision suffisante par interpolation. Pour les diamètres plus petits que ce diamètre d'arbre d_w nous sommes à votre disposition pour calculer les couples transmissibles M et les forces axiales F.

Portée axiale de la surface de contact LF

La transmission du couple ou de la force axiale est assurée par la surface de contact entre l'arbre creux et l'arbre plein. La pression exercée par la frette d'assemblage décroit significativement dans les zones en dehors de la portée axiale L_1 de la frette d'assemblage. Dans ces zones de faibles contraintes, il peut y avoir des micros mouvements qui facilitent la formation d'une corrosion pénalisante par frettage. De ce fait, la portée axiale de la surface de contact L_F doit être limitée à:

$$L_{\text{F}} \leq 1, 1 \cdot L_{1}$$

Avec une surface de contact de largeur plus faible que L_1 , la pression générée serait plus forte et pourrait endommager l'arbre plein, l'arbre creux ou le moyeu. Veuillez nous consulter pour un tel montage.

Jeu entre arbre creux et arbre plein

Si le jeu du montage excède les valeurs données dans le tableau, le couple transmissible ou la force axiale décroît. De plus on génère une contrainte plus importante de l'arbre creux. Dans ce cas, veuillez nous consulter.

Si le jeu du montage est plus faible que les valeurs indiquées, la frette d'assemblage, les arbres creux et pleins peuvent être endommagés au montage ou le couple indiqué dans les tableaux peut ne plus être transmis. Veuillez nous consulter.

Coefficient de friction

Les valeurs indiquées dans les tableaux pour le couple transmissible M et la force axiale F sont définis pour un coefficient de friction μ = 0,15 pour les surfaces en contact entre arbre creux et arbre plein. Cette valeur est atteinte de

façon satisfaisante avec des aciers secs et dégraissés. Avec des valeurs de coefficient de friction différentes, le couple transmissible ou la force axiale changeront proportionnellement.

Transmission simultanée du couple et de la force axiale

Le couple transmissible M indiqué dans les tableaux est appliqué pour une force axiale F=0 kN et la force axiale F=0 kN et la force axiale F=0 kN. Si le couple ou la force axiale doivent être transmis simultanément, le couple transmissible M et la force axiale F=0 sont réduits par rapport aux valeurs indiquées dans les tableaux.

Pour une force donnée F_A ou un couple M_{A_7} le couple réduit M_{red} ou la force axiale F_{red} réduite sont calculés comme suit:

$$M_{red} = \sqrt{M^2 - (F_A \cdot \frac{d_w}{2})^2}$$

ou

$$F_{red} = \frac{2}{d_w} \sqrt{M^2 - M_A^2}$$

Eléments de formules

d_w = Diamètre de l'arbre plein / diamètre intérieur de l'arbre creux [mm]

F = Force axiale transmissible [kN]

F_A = Force axiale maximale de l'application [kN]

 F_{red} = Force axiale réduite [kN]

 L₁ = Portée axiale de la frette d'assemblage [mm]

L_F = Portée axiale des surfaces en contact [mm]

M = Couple transmissible indiqué dans le tableau [Nm]

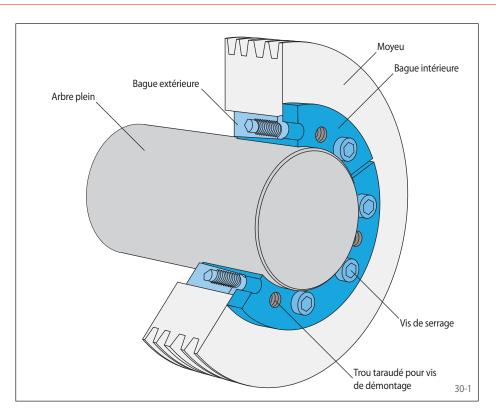
 M_A = Couple de pointe de l'application [Nm]

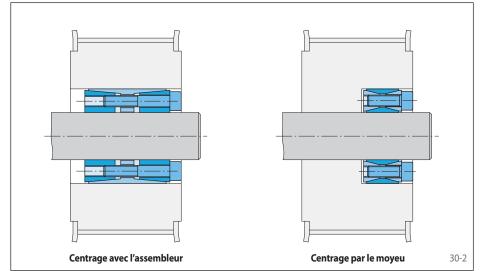
 M_{red} = Couple réduit [Nm]

 μ = Coefficient de friction

Construction et fonction des Assembleurs Expansibles

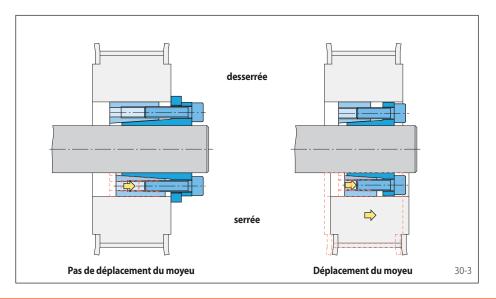
Les Assembleurs Expansibles tels qu'ils sont montrés à la figure 30-1 sont constitués d'une bague extérieure dont le diamètre interne est conique et d'une bague intérieure dont le diamètre externe est conique ainsi que d'un nombre de vis de serrage.


La bague extérieure est tirée sur la bague intérieure par le serrage des vis. Les pressions générées par les surfaces coniques en contact dépendent du couple de serrage des vis, de l'angle du cône intérieur et des coefficients de friction des vis et des surfaces coniques.


Les pressions radiales pressent la bague extérieure dans l'alésage du moyeu et la bague intérieure sur l'arbre créant ainsi une liaison par friction des surfaces en contact. De sorte que le couple et/ou la force axiale peuvent être transmis entre l'arbre et le moyeu.

Dans la configuration présentée sur le schéma ci-joint, l'assemblage est démonté en tournant quelques vis de démontage dans des taraudages spécifiques pour ces vis. Cela a pour effet d'éjecter la baque extérieure.

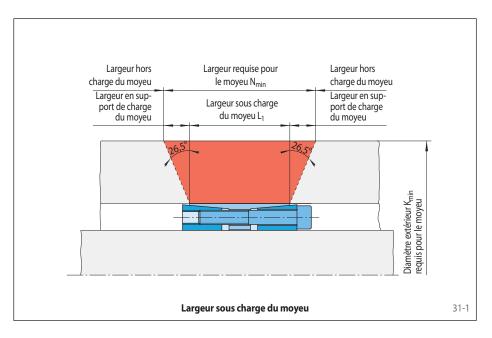
Centrage du moyeu sur l'arbre

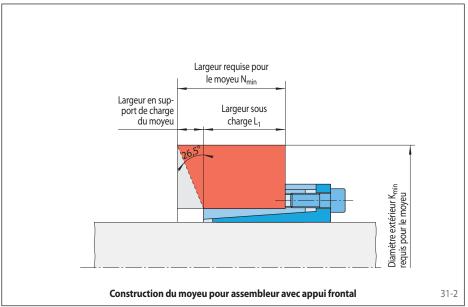

La précision de centrage du moyeu sur l'arbre est comprise entre 0,02 et 0,04 mm avec un Assembleur Expansible, à l'exception des séries RLK 200 et RLK 300. Pour ces séries, le moyeu doit être centré sur l'arbre en accord avec la précision nécessaire à l'application.

Absence de déplacement relatif du moyeu sur l'arbre pendant le serrage

La vue d'ensemble des pages 4 et 5 montre les séries avec lesquelles il n'y aura pas de déplacement axial relatif du moyeu sur l'arbre au moment du serrage. Cela peut être assuré par exemple par la collerette d'appui de la bague intérieure sur le moyeu. Pour toutes les autres séries la procédure de serrage (par serrage des vis et traction de la bague extérieure sur la bague intérieure) induit un déplacement axial du moyeu.

Largeur et diamètre extérieur du moyeu




Les liaisons arbre-moyeu par friction avec Assembleurs Expansibles provoquent des pressions radiales très importantes. Cela nécessite une analyse de la résistance des arbres et des moyeux. Pour cela, les tableaux des Assembleurs Expansibles donnent la pression maximale P_W sur l'arbre et la pression maximale P_N sur le moyeu au niveau des surfaces en contact avec l'assembleur.

La pression de contact P_W provoque une pression radiale qui n'est en général pas critique pour des arbres en acier. Il y a toujours une pression tangentielle σ_t , dans le moyeu et, pour les moyeux d'épaisseur réduite, elle peut être un multiple de la pression P_N . La valeur de la force de pression tangentielle dépend de la largeur du moyeu, du diamètre extérieur du moyeu et de la force de pression. Le calcul de la largeur du moyeu N_{min} prend en compte le fait que la pression P_N est appliquée sur la largeur L_1 du moyeu et supportée au-delà sur un angle approximatif de $26,5^\circ$ (voir figure 31-1).

Pour les différentes séries d'Assembleurs Expansibles, les tableaux listent les largeurs de moyeux N_{min} et les diamètres extérieurs de moyeux requis K_{min} pour trois exemples de limite élastique R_{e} de matière de moyeu. Pour les Assembleurs Expansibles avec collerette d'appui, le moyeu doit être défini comme indiqué dans la figure 31-2.

Pour toute construction différente, ou pour une matière de moyeu de limite élastique R_e plus faible, la liaison arbre-moyeu peut être vérifiée avec les paramètres techniques présentés pages 72 et 73.

