

Notice technique

BALLONS ET CHAUFFE-EAU ELECTRIQUE HELIO

MAJ 02/2021 Code Notice : 560822

Fabrication Française

Z.I. des Sablons- CS 50166 - 89101 SENS Cedex - FRANCE Tél. : + 33 (0) 3 86 64 73 73 - Fax : + 33 (0) 3 86 95 21 83 E-mail : commercial@charot.fr - www.charot.fr

S.A. AU CAPITAL DE 1 500 000 €

Notice technique

BALLONS ET CHAUFFE-EAU ELECTRIQUE HELIO

MAJ 02/2021 Code Notice : 560822

SOMMAIRE

			Pages
1)	DE	SCRIPTION	4
2)	но	MOLOGATIONS - REGLEMENTATIONS	4
3)	INS	STALLATION - MONTAGE	5
	3.1)	Précautions de mise en place	5
	3.2)	Montage de la jaquette	6
	3.3)	Collage de l'étiquette d'identification	7
	3.4)	Anode de protection en Magnésium	7
	3.5)	Plateau tampon	8
	3.6)	Options appoint électrique	8
	3.7)	Montage des options	12
	3.7 3.7	•	13 13
		7.3 Pompe d'homogénéisation	13
	3.7		14
	3.8)	Schémas de principe	15
4)	MI	SE EN SERVICE	17
	4.1)	Remplissage de l'appareil	17
	4.2)	Première mise en chauffe	17
	4.3)	Qualité de l'eau	18
5)	RE	COMMANDATIONS LEGIONELLES	19
	5.1)	Pack Control 4® (Option)	20
6)	TR	ANSPORT, STOCKAGE, MANUTENTION	21
7)	EN'	TRETIEN	22
8)	GA	RANTIES	23
9)	PIE	CES DE RECHANGE	24
10) EN	CAS DE PANNE	25
13	L) CA	RACTERISTIQUES	26
	11.1	Dimensions - Poids - Puissances	26
	11.2	Isolation	28
	11.3	Données Ecoconception selon règlements 812/2013 et 814/2013	31

1) DESCRIPTION

Réservoirs de production d'eau chaude sanitaire du réseau de distribution.

Version A.T.L

- Réservoirs verticaux en Acier Thermo-Laqué (A.T.L)
- Protection cathodique par anode consommable en magnésium (de série) ou anode inusable par courant imposé en titane (en option)
- Pression de service 7 bar maximum
- Température ≤ 85°C
- Orifices suivant plans
- Buse Ø 100 équipée d'un plateau plein
- Isolation au choix épaisseur 100mm, classée au feu par un laboratoire accrédité COFRAC :
 - Thermoflex classée au feu M1
 - Calométal classée au feu M0

Version inox

- Réservoirs verticaux en inox 316 L décapés et passivés à 100%
- Sans anode
- Pression de service 7 bar maximum
- Température ≤ 95°C
- Orifices suivant plans
- Buse Ø 100 équipé d'un plateau plein
- Isolation au choix épaisseur 100mm, classée au feu par un laboratoire accrédité COFRAC :
 - ISOL 100 classée au feu M3
 - Calométal classée au feu M0

2) HOMOLOGATIONS - REGLEMENTATIONS

- Attestation de Conformité Sanitaire : tous nos composants en contact avec l'eau destinée à la consommation humaine possèdent une ACS.
- Appareils à pression : Nos ballons sont conformes à l'article 4.3 de la Directive européenne des équipements sous pression DESP 2014/68/UE, transposée en droit Français.
- Appareillage électrique : Les équipements électriques proposés sont conformes à :
 - **Décret 2015-1083** relatif à la sécurité des personnes, des animaux et des biens lors de l'emploi des matériels électriques destinés à être employés dans certaines limites de tension.
 - Transposition en droit français de la directive européenne basse tension 2014/35/UE.
 - Certains articles des normes Sécurité des appareils électrodomestiques et analogues :
 - o NF EN 60 335 1 : règles générales
 - O NF EN 60 335 2 21: règles particulières pour les chauffe-eaux à accumulation.

3) INSTALLATION - MONTAGE

- Poser le réservoir à l'endroit souhaité : voir précautions paragraphe 3.1)
- **Mettre** en place la jaquette : voir instructions paragraphe 3.2).
- **Coller** l'étiquette d'identification finale : voir instructions paragraphe 3.2)
- Monter l'anode en réalisant l'étanchéité dans le filet (version acier ATL) : voir instructions paragraphe 3.4)
- Monter le plateau tampon DN100 CHAROT : voir paragraphe 3.5)
- Monter et Raccorder le thermoplongeur (options appoint Elec) : voir paragraphe 3.6)
- Monter les accessoires du kit (en option) sur le réservoir (voir paragraphe 3.7)
- **Raccorder** les tuyauteries sur le réservoir en respectant les préconisations générales des schémas d'installation au paragraphe 3.8)
- **Remplir** le réservoir d'eau. S'assurer du bon remplissage par soutirage à un robinet raccordé au ballon par exemple.
- Manœuvrer la(les) soupape(s)
- Vérifier le serrage des connexions électriques

3.1) Précautions de mise en place

Nos matériels de production d'eau chaude doivent être installés conformément :

- aux normes en vigueur
- aux prescriptions du D.T.U
- aux prescriptions ci-dessous

Implantations (obligatoire dans un local chaufferie).

Les chauffe-eau ne sont pas conçus pour être installés :

- · dans une atmosphère corrosive
- dans une atmosphère explosive
- en extérieur

Les ballons tampon **HELIO doivent être installés dans un local ventilé** afin de maintenir une **température ambiante inférieure à 30°C.**

Humidité relative 30 à 80 % (non condensée).

Le local doit être accessible par camion permettant leur retrait éventuel sans manutention ni démolition quelconque. Prévoir un dégagement suffisant autour du réservoir pour le montage des accessoires (jaquette, thermoplongeur, etc.) et les opérations d'entretien.

L'emplacement choisi devra être plan et de résistance suffisante pour supporter le poids du réservoir plein et des accessoires.

Il est obligatoire d'installer :

- Une **soupape de sécurité** dimensionnée et tarée à la pression de service du matériel, au plus près du ballon. Aucun organe de fermeture ou séparation (vanne d'isolement, clapet, ...) ne doit être installé entre le ballon et cette soupape. Son raccordement de sortie doit être maintenu ouvert à l'atmosphère et raccordé à l'égout.
- Une purge d'air sur le départ d'eau chaude (évacuation des gaz dissous)
- Une vanne de vidange rapide Ø50/60 pour l'évacuation des dépôts.
- Ne pas mélanger différents métaux favorisant les couples électrochimiques (ex : Cuivre + Acier).
 La mise en place de raccords diélectrique est vivement recommandée dans le cas de tuyauteries en cuivre.

Prévoir une vanne d'entrée d'air en partie haute pour éviter une dépression lors de la vidange du ballon (hors garantie).

3.2) Montage de la jaquette

Avant de positionner définitivement le ballon à son emplacement final, lire attentivement la notice de montage fournie dans l'emballage de la jaquette.

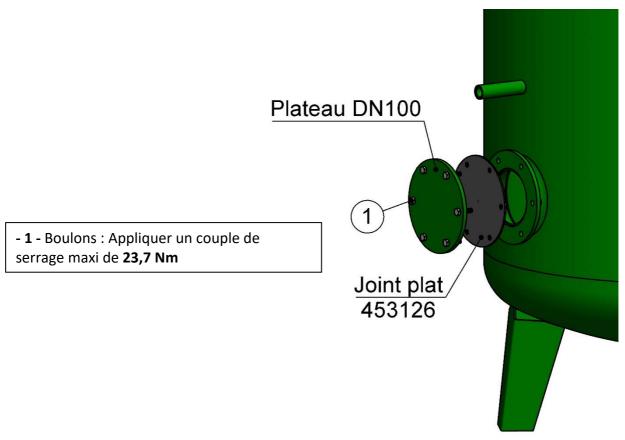
- Notice de montage jaquette isolante M3 : code notice 560830
- Notice de montage jaquette isolante M1 : code notice 560831
- Notice de montage jaquette isolante M0 : code notice 560870

3.3) Collage de l'étiquette d'identification

Une **étiquette d'identification** du matériel est fournie avec le document accompagnant le matériel. Une fois la jaquette montée, <u>coller cette étiquette</u> d'identification à l'emplacement réservé. La référence sera à indiquer obligatoirement pour toute demande de SAV.

3.4) Anode de protection en Magnésium

Anodes magnésium (790061 à 790062) :


L'anode sera montée directement sur le manchon 33/42 prévu à cet effet.

L'étanchéité sera réalisée dans le filet à l'aide de pâte et de filasse par exemple. Les matériaux utilisés devront avoir l'attestation de conformité sanitaire (**ACS**).

3.5) Plateau tampon

Le plateau du réservoir en version tampon eau chaude sanitaire est plein.

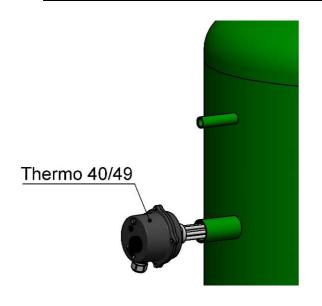
Le raccordement est réalisé à l'aide des piquages du réservoir. (Voir schéma installation)

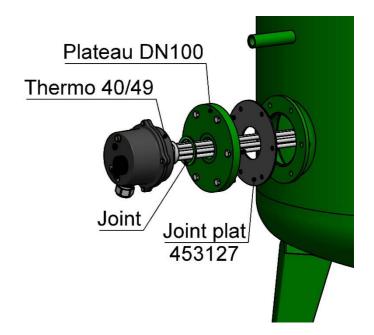
3.6) Options appoint électrique

Au préalable, monter le plateau taraudé, 40/49 ou M 77x200 suivant le modèle du thermoplongeur à visser, avec le joint plat percé code **453 127**. S'assurer du bon serrage des boulons (voir ci-après).

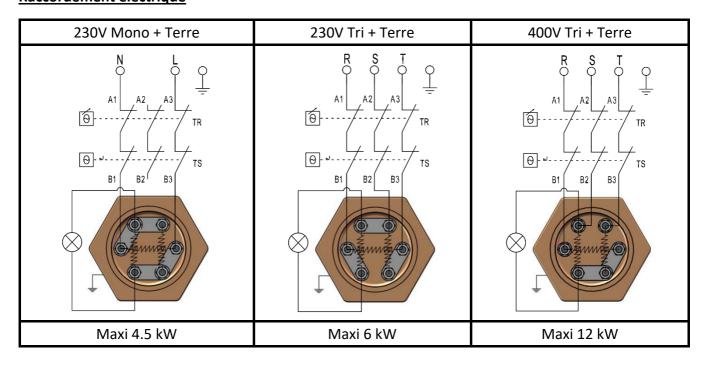
Pour le montage des thermoplongeurs sur plateau avec une portée de joint, réaliser l'étanchéité avec le joint plat fourni avec le thermoplongeur, dans ce cas, graisser le joint et la portée avec une pâte type « Gebatout » ou similaire avant le montage de la résistance.

Pour le montage des thermoplongeurs 40/49 sur manchon taraudé, réaliser l'étanchéité dans le filet, à l'aide de pâte et de filasse par exemple. Les matériaux utilisés devront avoir l'attestation de conformité sanitaire (ACS).

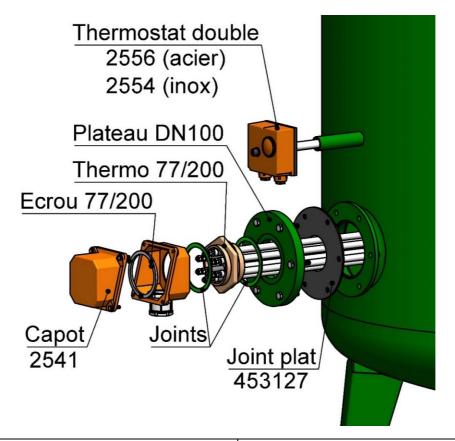

MONTAGE DES THERMOPLONGEURS - 3 à 12 kW Ø 40/49


Pour Version ATL (2645 à 2649)

- Thermostat de régulation réglable de 30°C à 75°C.
- Thermostat de sécurité réglé à 98°C.
- Sécurité positive à réarmement manuel.
- Intensité nominale 20A maxi.
- Utilisation sans contacteur.
- Voyant de mise sous tension.


Pour Version INOX (2640 à 2644)

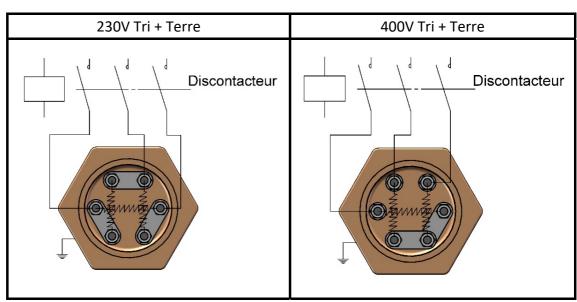
- Thermostat de régulation réglable de 30°C à 90°C.
- Thermostat de sécurité réglé à 110°C.
- Sécurité positive à réarmement manuel.
- Intensité nominale 20A maxi.
- Utilisation sans contacteur.
- Voyant de mise sous tension.



Raccordement électrique

Nota: Couplage en usine 400 V tri + Terre (sans neutre).

MONTAGE DES THERMOPLONGEURS - 9 à 24 kW Ø77


Thermostat double pour Version ATL (2556)

- Régulation réglable de 15°C à 75°C.
- Sécurité réglée à 90°C.
- Sécurité positive à réarmement manuel.
- Prévoir discontacteur de puissance.

Thermostat double pour Version INOX (2554)

- Régulation réglable de 0°C à 90°C.
- Sécurité réglée à 110°C.
- Sécurité positive à réarmement manuel.
- Prévoir discontacteur de puissance.

Couplage des thermoplongeurs 9 à 24 kW

Nota: Couplage en usine 400 V tri + Terre (sans neutre).

Discontacteur hors fourniture CHAROT

Voir "Boitier contacteur" ou "armoire de puissance ELECTR'A"

Câblage du thermostat double unipolaire (TR+TS)

Exemple câblage heures creuses

Alimentation 400V tri + terre TR 🔞 1L3 1L1 1L2 EDF EDF: contact heures creuses EDF CHC: contacteur heures creuses : thermostat de sécurité TS : thermostat de régulation TR 2L1 2L2 2L3 KM1: contacteur de puissance CHC Discontacteur

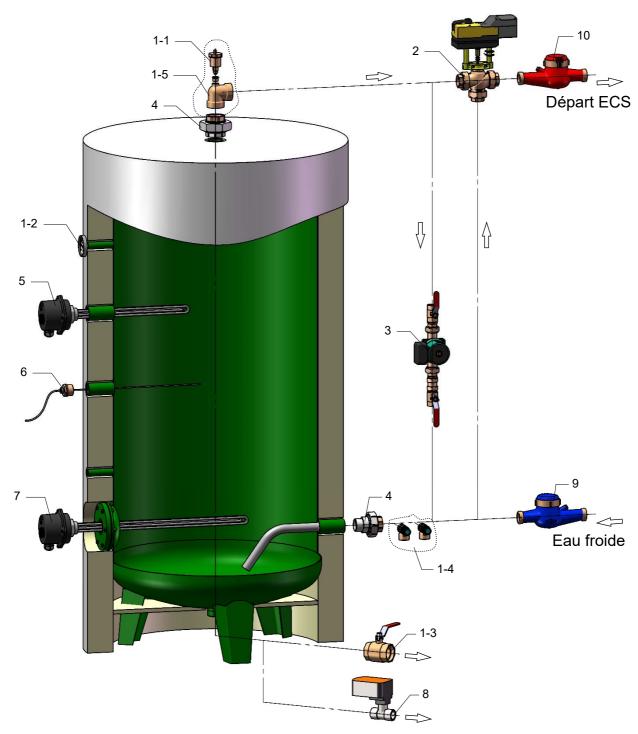
KM1

Α2

KM1

Thermoplongeur

Discontacteur et contacteur heures creuses hors fournitures CHAROT Voir "Boitier contacteur" ou "armoire de puissance ELECTR'A"


neutre

Raccordement Électrique

- Le disjoncteur de protection contre les surintensités, le discontacteur et la section des câbles d'alimentation devront être choisis conformément à la **NF C 15100** (tenir compte du mode de pose, de la longueur du câble et du courant de court-circuit).
- Il est nécessaire de prévoir un dispositif de protection à coupure automatique en cas de défaut d'isolement, dispositif différentiel ou autre en fonction du régime de neutre.
- Matériel classe 1 indice de protection IP21 / IK08
- Vérifier le couplage des thermoplongeurs en fonction de la tension du réseau.
- La mise sous tension hors eau conduit à la destruction irrémédiable des thermoplongeurs (sans garantie)

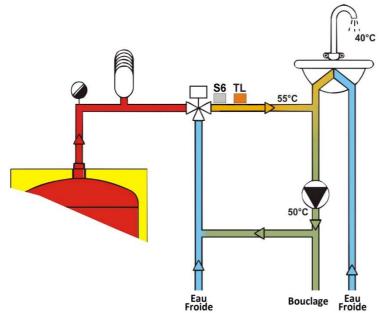
LE RACCORDEMENT A LA TERRE EST OBLIGATOIRE

3.7) Montage des options

- 1 Kit accessoires (181 et 182).
 - 1-1 Purgeur d'air automatique.
 - 1-2 Thermomètre.
 - 1-3 Vanne de vidange Ø50/60.
 - 1-4 Soupape (kit **181** : 150 à 750L). ou 2 soupapes (kit **182** : 1000L à 3000L).
 - 1-5 Coude départ E.C.S et prise purgeur.
- 2 Vanne 3 voies motorisée E.C.S. (2786 à 2788).
- 3 Kit pompe homogénéisation (2573 à 2575).
- 4 Raccord diélectrique (2202 à 2213).

- 4 Raccord diélectrique (2202 à 2213).
- 5 Appoint électrique haut (**2640** à **2644**). et (**2645** à **2649**).
- 6 Anode insoluble (**194** à **196**). (uniquement pour enveloppe acier)
- 7 Appoint électrique bas (2640 à 2644) (2645 à 2649) et (2309 à 2324).
- 8 Chasse rapide automatisée (2745).
- 9 Débitmètre E.F (2741, 2742 et 2735).
- 10 Débitmètre E.C.S (2743, 2744 et 2736).

3.7.1 Vanne 3 voies départ ECS


La vanne 3 voies installée sur le départ ECS permet de mitiger la température de sortie du ballon pour assurer la température de distribution à 55°C, comme l'exige la réglementation.

Les vannes 3 voies proposées en option, sont équipées d'un servomoteur à retour à zéro pour assurer la fermeture de la vanne en cas de coupure de courant. Elles peuvent être pilotées par le régulateur Pack Control 4®, à l'aide d'une sonde placée en aval de la vanne 3 voies.

Caractéristiques du servomoteur

Alimentation: 24 V=

Puissance absorbée: 1.7 W - 3.5 VA

Caractéristiques des vannes

Codes	2786	2787	2788
DN	32	40	50
Kvs	16	22	40

3.7.2 Anode de protection en Titane

Anode insoluble (194 à 196):

L'électrode sera montée sur le manchon 33/42 prévu à cet effet avec la réduction 33/42 - 15/21 fournie.

Ballons 2000 à 3000 L : la seconde électrode pourra être montée sur le piquage 15/21 situé sur le plateau ou sur le manchon 15/21 en partie haute du ballon.

L'étanchéité sera réalisée dans le filet.

Alimentation électrique : se reporter à la notice de l'anode.

3.7.3 Pompe d'homogénéisation

Afin d'assurer une température homogène dans un ballon ou dans plusieurs ballons montés en série, il est recommandé d'installer une pompe de circulation.

Cette pompe, indépendante du circuit de bouclage, fait circuler l'eau chaude sanitaire depuis le haut du ballon, sur la tuyauterie de départ ECS, jusqu'en en bas du ballon, sur la tuyauterie d'arrivée d'eau froide. Les pompes peuvent être dimensionnées de telle manière que le débit permette de brasser le volume du ou des ballons 1 à 2 fois par heure.

Caractéristiques des pompes (proposées en option par CHAROT)

Alimentation: 230 V Mono + Terre - 50 Hz

Codes	Volume de		Débit * (m³/h)		Puissance maxi (W)		Intensité nominale maxi (A)				
Coucs	stockage total	Modèle	Modèle Vitesse moteur		Vitesse moteur		Vitesse moteur				
	(litre)		1	2	3	1	2	3	1	2	3
2573	jusqu'à 3000	STAR Z 20/5-3	1,2	2,5	3,8	45	66	89	0,20	0,29	0,39
2574	3 000 à 9000	UPS 32-80	2,2	5,5	11	135	200	220	0,6	0,9	0,98
2575	supérieur à 9000	TP 40-120	18			370			2.95		

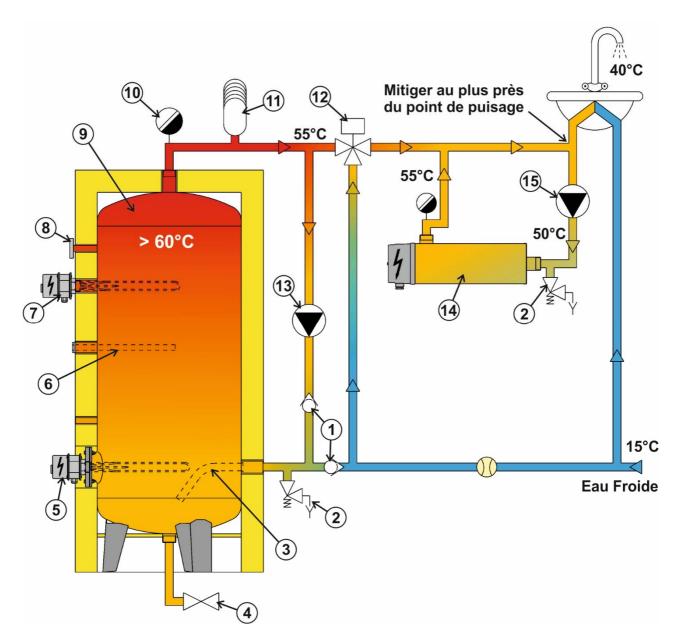
^{*} les débits indiqués peuvent varier en fonction des pertes de charge de l'installation.

Les kits pompes 2573 à 2575 sont composés d'un circulateur, d'un clapet anti-retour et de deux vannes d'isolement.

La pompe d'homogénéisation peut être pilotée par le régulateur Pack Control 4® dans les coffrets de pilotage et les armoires de puissance ELECTR'A. Voir la notice de ces produits.

3.7.4 Chasses rapides automatiques

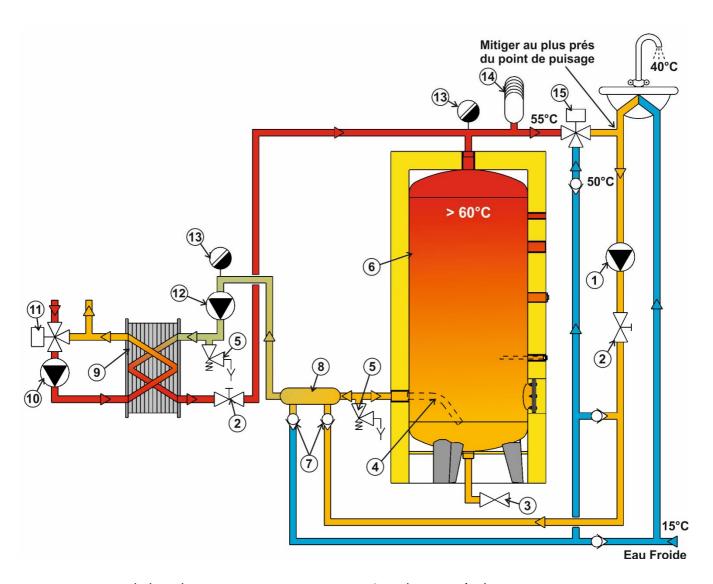
Afin d'assurer une évacuation régulière des dépôts dans le fond des ballons de production d'ECS, CHAROT propose en option, des vannes automatiques à rappel par ressort (fermeture par manque de courant). Ces vannes peuvent être pilotées par le régulateur Pack Control 4®.


Caractéristiques

Alimentation: 230 V Mono + Terre - 50 Hz

Code	Action	Puissance maxi (W)	Intensité nominale maxi (A)	
	A l'ouverture	5	0,15	
2745	Maintien ouvert	3		
	A la fermeture	Rappel par ressort		

3.8) Schémas de principe


VERSION TAMPON avec appoint ELECTRIQUE (avec réchauffeur de boucle)

- 1 Clapet anti-retour.
- 2 Soupape de sécurité.
- 3 Arrivée anti-dépôt.
- 4 Vidange totale.
- 5 Appoint électrique avec thermostat régulation et sécurité.
- 6 Anode (ATL).
- 7 Appoint électrique (option : voir paragraphe 3.6)

- 8 Thermomètre.
- 9 Réservoir Hélio.
- 10 Purgeur.
- 11 Anti-bélier.
- 12 V3V E.C.S mitigeage (option).
- 13 Pompe d'homogénéisation.
- 14 Circuit bouclage avec RBE ou RBS (option).
- 15 Pompe de bouclage.

VERSION TAMPON d'un échangeur à plaque

- 1 Pompe de bouclage.
- 2 Vanne de réglage.
- 3 Vidange totale.
- 4 Arrivée anti-dépôt.
- 5 Soupape de sécurité.
- 6 Réservoir tampon.
- 7 Clapet anti-retour.
- 8 Collecteur.

- 9 Echangeur à plaques.
- 10 Pompe primaire.
- 11 V3V primaire.
- 12 Pompe de charge.
- 13 Purgeur.
- 14 Anti-bélier.
- 15 V3V E.C.S mitigeage (option).

4) MISE EN SERVICE

4.1) Remplissage de l'appareil

Le remplissage des ballons s'effectue par l'orifice d'arrivée d'eau froide. Prévoir une vanne de purge d'air pour assurer le remplissage complet du ballon. S'assurer du remplissage complet par soutirage à un point de puisage raccordé au ballon, par exemple.

Lorsque de l'eau s'écoule du point de puisage, sans bruit et sans air dans l'eau, laisser couler l'eau 30 secondes puis fermer le robinet. Le ballon est plein.

Si une vanne a été installée entre le ballon et le purgeur d'air, vérifier qu'elle est bien ouverte.

Manœuvrer la soupape de sécurité afin d'en vérifier son bon fonctionnement.

Nota : il ne doit pas y avoir de vanne d'isolement entre le ballon et la soupape de sécurité. Une montée en pression excessive du ballon ayant entrainé quelque endommagement ne sera pas prise en garantie, si une telle vanne est installée.

Manœuvrer la vanne de vidange afin d'évacuer les dépôts ou les impuretés et déchets qui auraient pu s'accumuler au fond du ballon.

Vérifier l'absence de fuite au niveau des raccordements des tuyauteries.

4.2) Première mise en chauffe

<u>Rappel</u>: s'assurer du bon serrage de toutes les connexions électriques afin d'éviter les échauffements en cas de mauvais contact.

Les éléments chauffants type thermoplongeur ne doivent en aucun cas être mis en service si le ballon n'est pas entièrement rempli d'eau. Cela provoquerait une détérioration irrémédiable de la partie chauffante. Ce dommage n'est pas couvert par la garantie.

Lors de la première montée en température du réseau, de l'eau peut s'écouler de la soupape de sécurité, ce qui est normal. Cela est dû à la dilatation de l'eau qui génère une augmentation de la pression du réseau. En aucun cas l'orifice de sortie de la soupape ne doit être bouché. Il doit être raccordé à l'égout.

IMPORTANT: QUALITÉ DE L'EAU

- L'eau destinée à l'utilisation sanitaire est, par excellence, un solvant des substances organiques, minérales ou gazeuses, d'où la nécessité d'une analyse d'eau.
 Le D.T.U. 60.1 comporte un ensemble de prescriptions qui paraissent les plus aptes à prévenir les corrosions dans les circuits d'eau chaude sanitaire. Si nécessaire, un traitement d'eau devra équiper l'installation afin d'éviter les risques de détérioration du matériel.
- La fonction du générateur de production d'eau chaude sanitaire étant d'élever la température de l'eau, la corrosion et les dépôts de toutes sortes sont donc directement liés à :
 - La composition chimique et notamment la dureté (TH)
 - La quantité d'eau réchauffée
 - La température de fonctionnement

Recommandations fabricant:

Les réservoirs E.C.S. sont conçus pour la production ou le stockage d'eau chaude sanitaire. Toute autre utilisation doit nous être signalée pour validation.

Pour préserver le bon état des réservoirs et garder le bénéfice de la garantie il est impératif de respecter les points suivants :

- Les températures maximales préconisées ne devront pas être dépassées. Prévoir un système, thermomécanique ou autre, permettant de limiter la température, suivant type de matériel.
- En présence d'adoucisseur, le TH ne devra jamais être en dessous de 10 °français, maintenir de préférence une valeur comprise entre 12 et 15 °f.
- Maintenir un PH supérieur ou égal à 7.
- Limiter le taux de chlorures à 30mg/l pour les réservoirs inox.

LE NON RESPECT DE CES RECOMMANDATIONS ANNULE LA GARANTIE CONSTUCTEUR.

5) RECOMMANDATIONS LEGIONELLES

Extrait de l'Arrêté du 30 novembre 2005 :

« Afin de limiter le risque lié au développement des légionnelles dans les systèmes de distribution d'eau chaude sanitaire, (...) les exigences suivantes doivent être respectées :

- lorsque le volume entre le point de mise en distribution et le point de puisage le plus éloigné est supérieur à 3 litres, la température de l'eau doit être supérieure ou égale à 50 °C en tout point du système de distribution, à l'exception des tubes finaux d'alimentation des points de puisage. Le volume de ces tubes finaux d'alimentation est le plus faible possible, et dans tous les cas inférieur ou égal à 3 litres;
- lorsque le volume total des équipements de stockage est supérieur ou égal à 400 litres, l'eau contenue dans les équipements de stockage, à l'exclusion des ballons de préchauffage, doit :
 - être en permanence à une température supérieure ou égale à 55 °C à la sortie des équipements ;
 - ou être portée à une température suffisante au moins une fois par 24 heures, sous réserve du respect permanent des dispositions prévues au premier alinéa du présent article. »

Le temps minimum de maintien de la température de l'eau à respecter est le suivant :

TEMPS MINIMUM DE MAINTIEN de la température	TEMPÉRATURE DE L'EAU (°C)	
2 minutes	Supérieure ou égale à 70 °C	
4 minutes	65 °C	
60 minutes	60 °C	

Pour effectuer un traitement par choc thermique sur le réseau de distribution jusqu'aux points de puisage, il est recommandé d'élever la température choc thermique à 70°C environ et de réaliser un soutirage pendant 30 minutes sur tous les points de puisage.

Les chocs thermiques doivent être exceptionnels en cas de contamination et être réalisés sous haute surveillance pour éviter tout risque de brûlures.

Il est recommandé d'installer un mitigeur thermostatique au plus près des points de puisage pour abaisser la température de l'eau distribuée conformément à la réglementation.

Attention : réaliser un choc thermique à 70°C dans une installation constituée de tubes en acier galvanisé peut endommager gravement le revêtement galva.

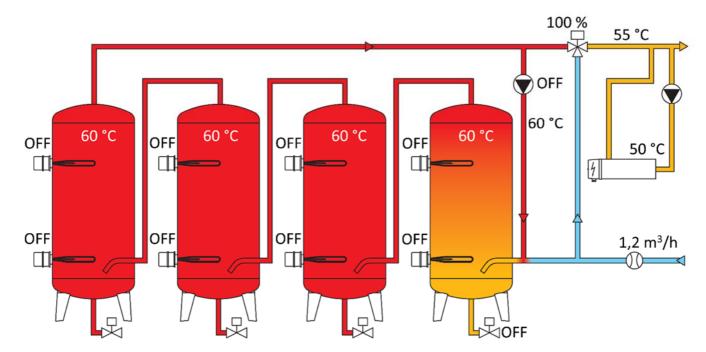
5.1) Pack Control 4® (Option)

Coffret Pack Control 4® PILOTAGE

Le **Pack control 4**®, en coffret mural, permet de piloter et contrôler à moindre coût une installation d'E.C.S.

Paramétrage de plus de 150 fonctions :

- Régulation et pilotage des composants
- · Relance de jour
- Pilotage des chocs thermiques
- Pilotage de la pompe d'homogénéisation
- Pilotage des chasses rapides automatisées
- Comptage de la consommation et énergie
- Surveillance des températures, débits et pression
- Enregistrement des événements
- Affichage des schémas types (voir ci-dessous)
- Suivi en temps réel sur les courbes de température.



- Manuellement sur l'écran tactile 7" couleur du Pack Control 4®
- A distance via réseau Ethernet ou en Wifi
- Par GTC (protocole Bacnet IP et Modbus RTU).

Armoire de puissance avec Pack Control 4®

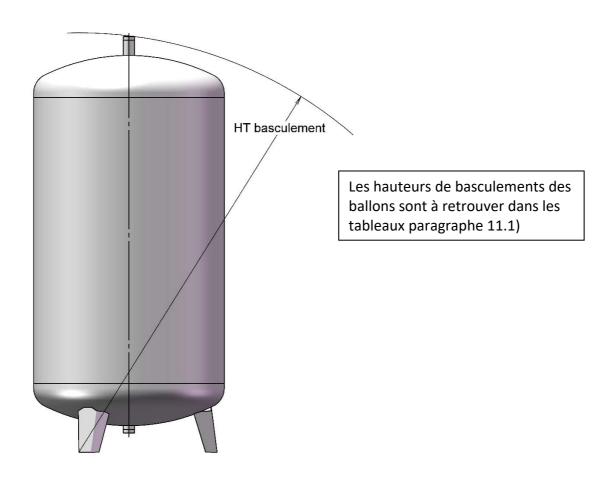
Le **Pack Control 4**® peut être intégré dans une armoire électrique possédant les composants du circuit de puissance de l'installation de production d'eau chaude sanitaire. Il conserve les mêmes fonctionnalités que dans le coffret Pilotage.

Exemple: 4 ballons HELIO en série, avec appoints

6) TRANSPORT, STOCKAGE, MANUTENTION

TRANSPORT - STOCKAGE

L'appareil doit être transporté et stocké dans son emballage d'origine jusqu'à son lieu d'installation.


Température ambiante inférieure à 30°C.

Humidité relative 30 à 80 % (non condensée).

MANUTENTION

- L'équipement sera manutentionné par des moyens de levage adéquats et par du personnel qualifié :
 - à l'aide d'un transpalette
 - par les oreilles de levage à l'aide d'un pont ou d'une grue d'une CMU compatible avec la charge à lever. Les élingues de manutention seront en adéquation avec la charge et en très bon état.
- L'équipement doit être manutentionné **vide** et sans aucun accessoire complémentaire non livré par le fabricant.
- La manutention sera effectuée par le client.

HAUTEUR DE BASCULEMENT

7) ENTRETIEN

La fréquence des interventions dépend de l'eau stockée (dureté - turbidité - agressivité etc ...) et du débit.

En conséquence il appartient de définir les périodicités d'entretien en fonction de chaque utilisation en ne dépassant pas les délais maximums indiqués ci-dessous

Pour toute intervention à l'intérieur du réservoir ou nécessitant le démontage d'un accessoire :

- **Vidanger** le ballon par la vanne en partie inférieure prévue à cet effet (voir schémas). Elle ne peut se faire que si les éléments chauffants ont été mis hors service.
- Réaliser une entrée d'air par la vanne positionnée en partie supérieure du ballon pour éviter la dépression lors de la vidange, pouvant entrainer la détérioration du ballon ou son revêtement (hors garantie).

Les opérations d'entretien suivantes sont à appliquer en fonction de l'équipement du ballon.

A la mise en service

- Resserrer les connexions du thermoplongeur après une semaine de fonctionnement
- Resserrer les boulons du plateau Ø100 après une semaine de fonctionnement
- Manœuvrer la ou les soupapes de sécurité

Entretien mensuel

- Effectuer une chasse rapide afin d'évacuer les dépôts
- Vérifier le bon fonctionnement :
 - ✓ du purgeur d'air
 - ✓ de la soupape
 - ✓ du thermostat

Entretien semestriel

- **Démonter** le thermoplongeur et le nettoyer soigneusement de tout dépôt (version électrique)
- Resserrer les connexions du thermoplongeur afin d'éviter les échauffements (version électrique)

Entretien annuel

- **Nettoyer** l'intérieur du réservoir des dépôts éventuels
- Vérifier le bon fonctionnement du circulateur

Entretien avant 2 ans de service

• Vérifier l'anode magnésium et la remplacer avant usure complète (version ATL)

8) GARANTIES

Nos réservoirs HELIO sont garantis contre la perforation :

Réservoirs ATL ou Inox

5 ans

Les équipements électriques sont garantis 1 an

Cette garantie se limite à notre choix, à la réparation ou au remplacement en nos usines de SENS des pièces reconnues défectueuses.

Elle exclut tout autre dommage, déplacement, frais de main d'œuvre qui pourraient en résulter.

LE RETOUR EN NOS USINES EST OBLIGATOIRE

Le remplacement des pièces ne prolonge pas la durée de la garantie et ne peut donner lieu à aucune indemnité pour frais divers ou préjudice quelconque.

Notre garantie ne couvre pas :

- L'entartrage, le gel, les corrosions extérieures
- Les détériorations imputables à la manutention ou au transport
- Le manque d'eau
- Les fausses manœuvres
- Les surpressions et coups de béliers
- Les erreurs d'installation ou d'utilisation
- Le manque d'entretien (voir chapitre 7)
- La dépression résultant de l'absence d'entrée d'air lors de la vidange du ballon

Les schémas d'installation sont indicatifs et n'empêchent pas de se conformer aux règles de l'art et aux réglementations ou prescriptions du D.T.U en vigueur

LA SOCIETE CHAROT SE RESERVE LE DROIT D'EFFECTUER DES MODIFICATIONS DE FABRICATION SANS PREAVIS.

9) PIECES DE RECHANGE

THERMOPLONGEUR Ø 77

Puissance kW	Longueur thermoplongeur (mm)	N° Code
9	420	2309
12	550	2312
15	680	2315
20	880	2320
24	1100	2324

ACCESSOIRES THERMOPLONGEUR

JOINTS					
Diamètre Quantité N° Code					
Ø 40	5	2566			
Ø 77	5	2567			

INTITULES	N° Code
Thermostat nu R 30/75° S 98°C	571 061
Thermostat nu R 30/90° S 110°C	571 060

THERMOPLONGEUR COMPLET Ø 40

	Puissance kW	Longueur thermoplongeur (mm)	N° Code
7	3	400	2645
AT	4.5	438	2646
ion	6	508	2647
Version ATL	9	668	2648
^	12	800	2649

×	3	400	2640
Ino	4.5	438	2641
on	6	508	2642
Version Inox	9	668	2643
^	12	800	2644

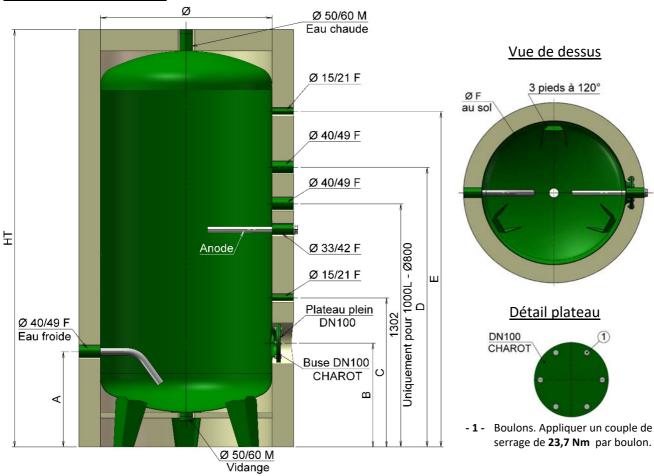
JOINTS pour buse de chauffe-eau

Diamètre	N° Code	
DN 100 (plein)	1 p.	453 126
DN 100 (percé Ø68)	1 p.	453 127

ACCESSOIRES CHAUFFE - EAU

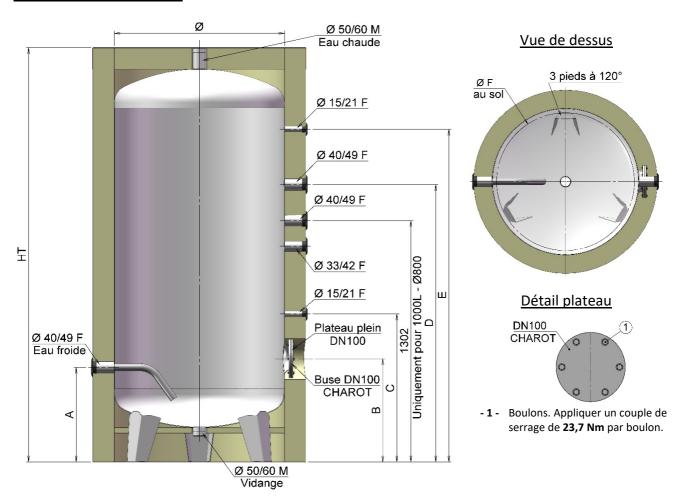
INTITULE	N° Code
Thermostat double (version ATL)	2556
Thermostat double (version inox)	2554
Thermomètre à cadran Ø 80	190
Soupape de sécurité Ø 20/27 F	164
Soupape de sécurité Ø 20/27 M	162
Anode Lg 400 (300 L à 1000 L)	790 061
Anode Lg 800 (> 1000 L)	790 062
Capot de protection thermoplongeur Ø 77	2541
Clé à douille pour thermoplongeur Ø 77 (cote sur plat 86 et 96 mm)	2545
Dispositif de montage thermoplongeur Ø 77	2546
Clé plate pour thermoplongeur Ø 40 (cote sur plat 61mm)	2564

10) EN CAS DE PANNE


Pour toute intervention, mettre le chauffe-eau HELIO <u>Hors tension</u>.

PANNES	A FAIRE
Le matin, l'eau est froide	 Vérifier que la tension d'alimentation arrive : 1/ au thermoplongeur 2/ au sectionneur Vérifier les fusibles Vérifier le thermostat de sécurité
Lors de la mise en route, le disjoncteur déclenche Si la panne persiste	Faire intervenir un professionnel

11) CARACTERISTIQUES


11.1) <u>Dimensions - Poids - Puissances</u>

Hélio 300 L à 3000 L ATL

Volu	me (e	en L)	300	500	750	1000	1000	1500	1500	2000	2000	2500	3000
НТ Ва	scule	ment	1605	1820	1960	2390	1990	2330	2035	2085	2760	2590	2810
Volum	e réel	l (en L)	293	469	775	988	1003	1493	1496	1980	2179	2597	2864
		НТ	1590	1810	1945	2375	1975	2310	2005	2055	2735	2565	2785
		Ø	550	650	80	00	900	1000	1100	1250	1100	12	50
SI		Α	378	428		442		460	500	520	500	52	20
Dimensions (en mm)		В	418	468		482		500	540	560	540	56	50
imer (en r		С	628	678		692		710	750	770	750	77	70
D		D	1113	1288	1302	1732	1312	1630	1380	1400	2020	1820	2040
		Е	1258	1458	1562	1992	1572	1890	1550	1570	2280	2080	2300
		F	570	605	75	50	885	925	1075	1186	1075	11	86
Poids (sans	net (e s jaqu		65	91	120	146	153	197	253	300	331	363	390
Poids en kg)	МО	Ер	23	31	43	51	48	63	60	73	78	82	95
Poi (en	M1	100	9	12	20	24	22.5	30	29	36	42.5	40	44

Hélio 300 L à 3000 L INOX

Volu	ı me (en L)	300	500	750	1000	1000	1500	1500	2000	2000	2500	2500	3000	3000
нт ва	sculement	1605	1820	1960	2390	1990	2330	2035	2085	2760	2590	2205	2810	2480
Volum	HT Basculement Volume réel (en L Ø A B C D E		471	777	990	1003	1493	1496	1980	2179	2597	2610	2864	3035
	нт	1590	1810	1945	2375	1975	2310	2005	2055	2735	2565	2175	2785	2455
	A 378 428 44			00	900	1000	1100	1250	1100	1250	1400	1250	1400	
2	Α	378	118 468 482				460	500	520	500	520	560	520	560
nsion mm					482		500	540	560	540	560	600	560	600
imer (en r	С	628	678		692		710	750	770	750	770	810	770	810
	D	1113	1288	1302	1732	1312	1630	1380	1400	2020	1820	1490	2040	1680
	E	1258	1458	1562	1992	1572	1890	1550	1570	2280	2080	1660	2300	1940
	F	570	605	75	50	885	925	1075	1186	1075	1186	1195	1186	1195
	net (en kg) s jaquette)	45	68	108	130	154	199	255	303	335	367	441	395	490
ids kg)	мо Ер	23	31	43	51	48	63	60	73	78	82	80	9)5
Poids (en kg)	M3 100	14	16	20	24	23	30	29	36	43	44	42	4	l8

11.2) Isolation

Jaquettes démontables en kit (pour installation en intérieur).

Jaquette Thermoflex souple

Classement au feu M1 avec P.V. du laboratoire accrédité COFRAC.

- Isolation par laine minérale recouverte d'un film P.V.C. souple.
- Isolation du fond inférieur par laine minérale ép. 15 mm.
- Chapeau et manteau en une seule pièce jusqu'à 3 000 L.
- Assemblage par fermeture éclair.

Pertes à l'arrêt (kWh.24h)

Valeurs mesurées selon EN 15332 [Rapport d'essai RTH 1315182] Uniquement pour Ep 100mm de 500 à 3000 litres.

V	/olume (en L)	300	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
E	p. calo 100	1.46	1.39	1.73	2.04	2.01	2.27	2.29	2.48	2.31	2.94	2.97	3.16	3.29

Constantes de refroidissement Cr (Wh/l.j.K)

Volume (en L)	300*	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
Ep. calo 100	0.099	0.066	0.049	0.046	0.044	0.0)34	0.028	0.023		0.025		0.024

Nota:

Ces valeurs sont calculées ou justifiées pour des épaisseurs de laine minérale de 100mm. L'épaisseur réelle mesurée peut varier en fonction de la compression du matériau une fois l'isolation montée sur le ballon.

* Dans les logiciels de calcul RT2012, indiquer VALEUR PAR DEFAUT pour le 300 L.

Jaquette Calometal

Classement au feu MO avec P.V. du laboratoire accrédité COFRAC.

- Isolation par laine minérale recouverte d'une tôle aluminium protégée par un film plastique.
- Orifices percés
- Isolation du fond inférieur par laine minérale ép. 15 mm.
- Chapeau en deux pièces. Manteau en plusieurs éléments suivant capacité.
- Fermeture par attaches rapides

Pertes à l'arrêt (kWh.24h)

Valeurs mesurées selon EN 15332 [Rapport d'essai RTH 1315182] Uniquement pour Ep 100mm de 500 à 3000 litres.

Volume (en L)	300	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
Ep. calo 100	1.46	1.84	2.30	2.71	2.67	3.02	3.04	3.29	3.07	3.90	3.94	4.19	4.37

Constantes de refroidissement Cr (Wh/l.j.K)

Volume (en L)	300*	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
Ep. calo 100	0.099	0.087	0.066	0.061	0.059	0.0	045	0.037	0.031		0.033		0.032

Nota:

Ces valeurs sont calculées ou justifiées pour des épaisseurs de laine minérale de 100mm. L'épaisseur réelle mesurée peut varier en fonction de la compression du matériau une fois l'isolation montée sur le ballon.

^{*} Dans les logiciels de calcul RT2012, indiquer VALEUR PAR DEFAUT pour le 300 L.

Jaquette mousse ISOL 100

Classement au feu M3 avec P.V. du laboratoire accrédité COFRAC.

- Isolation par mousse recouverte d'un film P.V.C. souple "foamé" (fine couche de mousse)
- Orifices prédécoupés
- Isolation du fond inférieur par laine minérale ép. 15 mm.
- Chapeau en une pièce, manteau en une ou deux pièces suivant capacité.
- Assemblage par fermeture éclair

Pertes à l'arrêt (kWh.24h)

Valeurs mesurées selon EN 15332 [Rapport d'essai RTH 1315182] Uniquement pour Ep 100mm de 500 à 3000 litres.

Volume (en L)	300	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
Ep. calo 100	1.15	0.68	0.85	1.00	0.99	1.11	1.12	1.21	1.13	1.44	1.45	1.54	1.61

Constantes de refroidissement Cr (Wh/I.j.K)

Volume (en L)	300*	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
Ep. calo 100	0.078	0.032	0.024	0.0	022	0.0	017	0.014			0.012		

Nota:

Ces valeurs sont calculées ou justifiées pour des épaisseurs de mousse de 100mm. L'épaisseur réelle mesurée peut varier en fonction de la compression du matériau une fois l'isolation montée sur le ballon.

^{*} Dans les logiciels de calcul RT2012, indiquer VALEUR PAR DEFAUT pour le 300 L.

11.3) Données Ecoconception selon règlements 812/2013 et 814/2013

Helio tampon ATL et INOX:

En jaquette ISOL 100 M3:

Volume (en L)	300	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
Etiquette énergétique	А	A ⁺											
Pertes statiques (W)	48	28	35	42	41	46	47	50	47	(50	64	67
Volume réel (L)	298	471	777	990	1003	1493	1496	1980	2179	2597	2610	2864	3035

En jaquette Calométal 100 M0:

Volume (en L)	300	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
Etiquette énergétique	E	3											
Pertes statiques (W)	61	77	96	113	111	126	127	137	128	162	164	175	182
Volume réel (L)	298	471	777	990	1003	1493	1496	1980	2179	2597	2610	2864	3035

En jaquette Thermoflex 100 M1:

Volume (en L)	300	500	750	1000	1000 Ø900	1500	1500 Ø1100	2000	2000 Ø1100	2500	2500 Ø1400	3000	3000 Ø1400
Etiquette énergétique	В	А											
Pertes statiques (W)	61	58	72	85	84	Ç	95	104	96	122	123	132	137
Volume réel (L)	298	471	777	990	1003	1493	1496	1980	2179	2597	2610	2864	3035